Vol 5 No 7 (2019): EPH - International Journal of Agriculture and Environmental Research (ISSN: 2208-2158)
Articles

The performance of filters planted with Typha Latifolia in the removal of ammonium and phosphates present in domestic wastewater

Nora Seghairi
Faculty of Science and Technology. Laboratory of Research in Civil Engineering, Hydraulics, Development, Sustainable and Environment (LARGHYDE). Mohamed Kheider University - Biskra - Algeria
Sara Badache
Faculty of Exact Sciences and Sciences of Nature and Life
Nawel Guerrouf
Faculty of Exact Sciences and Sciences of Nature and Life
Sara youcef
Faculty of Science and Technology. Laboratory of Research in Civil Engineering, Hydraulics, Development, Sustainable and Environment (LARGHYDE). Mohamed Kheider University - Biskra - Algeria
Leila Mimeche
Faculty of Science and Technology. Laboratory of Research in Civil Engineering, Hydraulics, Development, Sustainable and Environment (LARGHYDE). Mohamed Kheider University - Biskra - Algeria
Published August 2, 2019
Keywords
  • Planted filter,
  • Typha Latifolia,
  • wastewater,
  • ammonium,
  • phosphate
How to Cite
Seghairi, N., Sara Badache, Nawel Guerrouf, Sara youcef, & Leila Mimeche. (2019). The performance of filters planted with Typha Latifolia in the removal of ammonium and phosphates present in domestic wastewater. EPH - International Journal of Agriculture and Environmental Research (ISSN: 2208-2158), 5(7), 01-08. Retrieved from https://ephjournal.com/index.php/aer/article/view/1513

Abstract

Systems for the purification of waste water by aquatic plants, functioning as biological assimilators by eliminating both biodegradable and non-biodegradable compounds as well as nutrients and metals. Several works have proven their ability to efficiently exploit municipal wastewater and industrial effluents. It is in this perspective that the aim of this study, which is to highlight the potentialities of a filter planted with Typha Latifolia to eliminate nitrates and ammonium present in domestic wastewater, is included. This work consists in controlling the purifying power of this plant during the passage of polluted water through this filter. The results obtained show that the elimination percentages are of the order of 90.38% and 91.65% respectively for ammonium and phosphates for a period of 10 days whereas the non-planted filters showed an elimination ranging from 68.65% and 78.11%.

Downloads

Download data is not yet available.

References

1. Brix, H., 1993.Wastewater treatment in constructed wetlands: system design, removal processes and treatment performance, In: Moshiri, G.A. (Ed.), Constructed Wetlands for Water Quality Improvement. CRC Press, Boca Raton, FA, pp. 9-22.
2. Mitsch, W.J., Jorgensen, S.E., 2004. Ecological Engineering and Ecosystem Restoration. John Wiley & Sons, Inc., New York, 411p.
3. Vymazal J., 2005. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering 25, 478-490.
4. Kern I, Idler C. , Treatment of domestic and agricultural wastewater by reed bed systems. Ecological Engineering, 12, (1999), 13-25
5. Zhang, B.Y., Zheng, J.S., Sharp, R.G., 2010a. Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environmental Sciences 2, 1315-1325.
6. Yalcuk A, Ugurlu A. 2009. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresource Technol. 100(9):2521–2526. doi:10.1016/j.biortech.2008.11.029.
7. Kadlec, R.H., 2009. Comparison of free water and horizontal subsurface treatment wetlands. Ecological Engineering 35, 159-174.
8. Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, R.A., Moormann, H., 2003. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances 22, 93-117
9. Boutin, C., LIÉNARD, A., ESSER, D., 1997, Development of a new generation of reed-bed filters in France : first results, Wat. Sci. Tech., 35 (5), p. 315-322.Mandi et al., 1996,
10. Molle, P., Liénard, A., Boutin, C., Merlin, G., Iwema, A. How to treat raw sewage with constructed wetlands: an overview of the French systems, Water Science & Technology, 2005, vol. 51 (9), pp. 11-21.
11. Mimeche L. , M. Debabeche, , N. Seghairi, N. Benameur, Possibilités d’élimination des polluants des eaux usées urbains sous climat aride par filtre planté du Cypurus Papyrus. du savoir N°21, 2016.
12. Seghairi, N., Debabeche, M. (2011). Possibilités de rétention du cuivre et du zinc sur un filtre planté de papyrus, Communication orale, 3ème Edition du Congrès International sur Eau, Déchets etEnvironnement- Fès- Maroc.
13. Tiglyene S. , L. Mandi, AE. Jaouad, Enlèvement du chrome par infiltration verticale sur lits de phragmites australis. Rev. Sci.Eau 18(2), (2005) 177-19.Seghari et al 2013.
14. Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 35 (5), 11–17.Shelef et al., 2013.
15. Breen P.F., and Chick A.J., 1995. Rootzone dynamics in constructed wetlands receiving wastewater: a comparison of vertical and horizontal flow systems. Wat. Sci. Tech 32(3): 281-290.
16. Breen P.F., 1997. The performance of vertical flow experimental wetland under a range of
17. operational formats and environmental conditions. Wat. Sci. Tech 35(5): 167-174.
18. Lee S.E., Kwang S., Kim, K., Kim S., and Kim., C.W., 1993. Enhancement of phosphorus and nitrogen removal with a side stream biological nutrient removal process. Wat. Sci. Tech 28(7): 89-96.
19. BRIX, H., et ARIAS, C.A.,(2005). The use of vertical flow constructed wetlands for onsite treatment of domestic wastewater: New Danish guidelines. Ecol. Eng. 25, 491–500
20. Gikas GD, Tsihrintzis VA, Akratos CS. 2011. Performance and modeling of a vertical flow constructed wetland–maturation pond system. J Environ Sci Health A. 46(7):692–708. doi:10.1080/10934529.2011.571579.
21. Vymazal J. 2011. Constructed wetlands for wastewater treatment: five decades of experience. Env Sci Technol. 45(1):61–69. doi:10.1021/es101403q.
22. Zurita, F., Belmont, M.A., De Anda, J., White, J.R., 2011. Seeking a way to promote the use of constructed wetlands for domestic wastewater treatment in developing countries. Water Sci. Technol. 63 (4), 654–659.
23. Badache S., Seghairi N., Guerrouf N. (2018). Comparative study between two plants (Typhalatifolia and Phragmitesaustralis) to eliminate Copper present in industrial wastewater. International Water Forum Conference . Hammamet- Tunisie.
24. Burgos, V., Araya, F., Reyes-Contreras, C., Vera, I., Vidal, G., 2017. Performance of ornamental plants in mesocosm subsurface constructed wetlands under different organic sewage loading. Ecol. Eng. 99, 246–255.
26. Calheiros, C.S., Bessa, V.S., Mesquita, R.B., Brix, H., Rangel, A.O., Castro, P.M., 2015. Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility. Ecol. Eng. 79, 1–7Zurita et al., 2011.,
27. Seghairi, N. Mimeche, L. Debabeche, M. et Khider, S, Possibilités d’élimination des phosphates et de l’azote à partir des eaux domestiques en utilisant un filtre planté de papyrus. 4ème Edition du Congrès International sur Eau, Déchet et Environnement- Agadir- Maroc ( 2013)
28. Spichiger R., Savolainen V., Figeat M., Jeanmonod D., 2002. Botanique systématique des plantes à fleurs. Ed. OPUR, 413p.
29. Fartas.T .Zeggane, H., 2011. Le 1er séminaire international sur la ressource en eau au Sahara : Evaluation, Economie et Protection, le 19 et 20 janvier 2011, étude des performances épuratoires d’une station d’épuration pilotes par macrophyites la commune de Témacine, Ouargla .7P
30. Reddy, K, R ; Debusk , T ,A;(1987). Nutrient storage capabilities Of aquatic and wetlands plant. Aquatic plant for water treatment and resource recovry Orlando . Mangonlia Publishing Inc.Pp337-357.
31. Reddy, K.R., D’Angelo, E.M., and DeBusk, T.A. 1989. Oxygen transport through aquatic macrophytes: the role in wastewater treatment. Journal of Environmental Quality 19: 261–267.
32. Reed S.C. Natural system for wastewater treatment.WPCF,1990, 211-260.