Vol 5 No 8 (2019): EPH - International Journal of Applied Science | ISSN: 2208-2182
Articles

Osmotic Dehydration of Mango Slices in Sugar Solution using Response Surface Methodology

Khin Swe Oo
University of Yangon
Bio
Soe Soe Than
University of Yangon
Bio
Published August 21, 2019
Keywords
  • Optimization,
  • osmotic dehydration,
  • mango,
  • response surface methodology
How to Cite
Khin Swe Oo, & Soe Soe Than. (2019). Osmotic Dehydration of Mango Slices in Sugar Solution using Response Surface Methodology. EPH - International Journal of Applied Science (ISSN: 2208-2182), 5(8), 01-10. Retrieved from https://ephjournal.com/index.php/as/article/view/1534

Abstract

The response surface methodology (RSM) was applied to optimize the effects of immersion time (90, 120and 180min), temperature (40, 50 and 60⁰C) and concentration of sucrose solution (40, 50 and 60⁰Brix) in osmotic dehydration of mango fruit slices (3mm thickness). Box-Behnken Design was used with water loss (WL, %), solid gain (SG, %), and weight reduction (WR, %) as responses. The models obtained for all the responses were significant (P≤0.05) without a significant lack of fit. The optimum conditions were temperature (50°C), immersion time (2hr), concentration of sucrose solution (56.756⁰Brix) in order to obtain WR of(  32.75 g/100g initial sample), SG of (18.799g/100g initial sample) and WL of  (51.551g/100g initial sample), respectively

Downloads

Download data is not yet available.

References

  1. Giraldo GG, Duque C A, García C L. Combining drying methods for candy mango (Mangifera indica) var. Kent.Vitae. 2005; 12 (2):5-12
  2. Moreno A, León D, Giraldo G, Ríos E. Estudio de la cinética fisicoquímica del mango (Mangifera indica L. Var. Tommy Atkins) tratado por métodos combinados de secado. Dyna. 2010; 77 (162): 75-84.
  3. Giraldo G, Talens P, Fito P, Chiralt A. Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. J Food Eng. 2003; 58 (1): 33-43.
  4. Enachescu-Dauthy M. Fruit and vegetable processing [on line]. FAO Agricultural Services Bulletin No. 119, Roma: Food and Agriculture Organization of the United Nations – FAO, 1995, [May 2 2019]. Available in: http://www.fao.org/docrep/V5030E/ V5030E00.htm#Contents
  5. Battcock M, Azam-Ali S. Fermented fruits and vegetables: A global perspective [en línea]. FAO Agricultural Services Bulletin No. 134, Roma, Food and Agriculture Organization of the United Nations–FAO, 1998, [May 2 2019]. Available in: http:// www.fao.org/docrep/x0560e/x0560e00.htm
  6. Tortoe, C., J. Orchard and A. Beezer, 2007. Osmotic dehydration kinetics of apple, banana and potato. Int. J. Food Sci. Technol., 42: 312-318.
  7. Raoult-Wack, A.L., 1994. Recent advances in the osmotic dehydration of foods. Trend Food Sci. Technol., 5: 255-260.
  8. Alakali, J.S., C.C. Ariahu and N.N. Nkpa. Kinetics of osmotic dehydration of mango.Journalof Food Processing and Preservation.2006; 30:597-607.
  9. Rastogi, NK and K. Raghavarao. 1997. Water and solute diffusion coefficients of carrot as a function of temperature and concentration during osmotic dehydration. Journal of Food Engineering. 34:429- 440. 100.
  10. Singh, B., Paramjit S. Panesar Vikas Nanda M B. Bera, 2008, Optimization of Osmotic Dehydration Process of Carrot Cubes in Sodium Chloride Solution, International Journal of Food Engineering, 4(2) 1-24
  11. Taiwo, K.A., M.N. Eshtiaghi, B.I.O. Ade-Omowaye and D. Knorr. Osmoticdehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Int. J. of Food Science and Technology.2003; 38: 693-707.
  12. Conway, J., F. Castaigne, G. Picard and X. Vovan.1983. Mass transfer consideration in the osmotic dehydration apples. Can.Instute of Food Science and Technology Journal. 16: 25-29.
  13. Lazarides, HN. 2001. Reasons and possibilities to control solids uptake during osmotic treatment of fruits and vegetables. pp. 33–42. In Fito, P, Chiralt, A, Barat, JM Spiess, WEL and Behsnilian D (eds.), Osmotic dehydration and vacuum impregnation: Applications in food industries USA: Technomic Publ. Co.Ltd.
  14. . Jiokap, N.Y., G.B. Nuadje, A.L. Raoult-Wack and F. Giroux, 2001. Déshydratation-imprégnation par immersion de rondelles de mangue (Mangifera indica) : influence de la température et de la concentration de la solution sur les cinétiques de certains éléments constitutifs du fruit. Fruits, 56: 169-177.
  15. Azoubel, P.M. and F. Oliveira da Silva, 2008. Optimisation of osmotic dehydration of 'Tommy Atkins' mango fruit. Int. J. Food Sci. Technol., 43: 1276-1280.
  16. Singh, B., P.S. Panesar and V. Nanda, 2008. Osmotic dehydration kinetics of carrot cubes in sodium chloride solution. Int. J. Food Sci.
  17. Technol., 43: 1361-1370.
  18. Falade, K.O. and T.A. Adelakun, 2007. Effect of pre-freezing and solutes on mass transfer during osmotic dehydration and colour of oven-dried African star apple during storage. Int. J. Food Sci.Technol., 42: 394-402.
  19. Taiwo, K.A., M.N. Eshtiaghi, B.I.O. Ade- Omowaye and D. Knorr, 2003. Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Int. J. Food Sci. Technol., 38: 693-707.
  20. Azoubel, P.M. and F. Murr. 2003. Optimization of osmotic dehydration of cashew apple (Anacardium occidentale L.) in sugar solutions. Food Sci. Technol. Int. 9(6), 427-433.
  21. Corzo, O , Gomez, E.R, 2004.,Optimization of osmotic dehydration of cantaloupe using desired function methodology, Journal of Food Engineering, 64, 213–219.
  22. Valdez-Fragoso, A., S.I. Martínez-Monteagudo, F. Salais-Fierro, J. Welti-Chanes, and H. Mújica-Paz. 2007. Vacuum pulseassisted pickling whole jalapeño pepper optimization. J. Food Eng. 79(4), 1261-1268.
  23. Ozdemir, M., B. Ozen, L. Dock, and J. Floros. 2008. Optimization of osmotic dehydration of diced green peppers by response surface methodology. LTW - Food Sci. Technol. 41(10), 2044-2050.
  24. Chauhan, O.P., A. Shah, A. Singh, P.S. Raju, and A.S. Bawa. 2009. Modeling of pretreatment protocols for frozen pineapple slices. Food Sci. Technol. LEB. 42(7), 1283-1288.
  25. Singh B, Kumar A, Gupta AK. (2007). Study of mass transfer kinetics and effective diffusivity during osmotic dehydration of carrot cubes, Journal Food Engineering; 79: 471–480.
  26. Box, G. E., Behnken, D. W., 1960, Some new three level designs for the study of quantitative three variables, Technometrics,2:455-475.
  27. Montgomery, D. Diseño y análisis de experimentos. (1991). 3th ed. Iberoamérica, Mexico DF.
  28. Lombard GE, Oliveira JC, Fito P, Andrés A. Osmotic dehydration of pineapple as a pre-treatment for further drying. J Food Eng.
  29. ; 85 (2): 277-84.
  30. Baljeet Singh Yadav & Ritika B. Yadav & Monika Jatain (2012) Optimization of osmotic dehydration conditions of peach slices in sucrose solution using response surface methodology. J Food Sci Technol: 49(5):547–555.
  31. Manivannan P, Rajasimman M (2008) Osmotic dehydration of beetroot in salt solution: optimization of parameters through statistical experimental design. Int J Chem Biomol Eng 1(4):215–222.
  32. Lazarides, H. N., Katsanidis, E., & Nickolaidis, A. (1995). Mass transfer kinetics during osmotic pre-concentration aiming at minimal solid uptake. Journal of Food Engineering, 25, 151-166.
  33. Ertekin, F. K., & Cakaloz, T. (1995). Osmotic dehydration of peas: I. influence of osmosis on drying behavior and product quality. Journal of Food Processing and Preservation, 20, 105-119.
  34. Jain S.K, Verma R.C., Murdia L.K., Jain H.K.,Sharma G.P, 2011, Optimization of process parameters for osmotic dehydration of papaya cubes, Journal Food Science Tech.48(2):211–217.