Vol 5 No 8 (2019): EPH - International Journal of Applied Science | ISSN: 2208-2182

Osmotic Dehydration of Mango Slices in Sugar Solution using Response Surface Methodology

Khin Swe Oo
University of Yangon
Soe Soe Than
University of Yangon
Published August 21, 2019
  • Optimization,
  • osmotic dehydration,
  • mango,
  • response surface methodology
How to Cite
Khin Swe Oo, & Soe Soe Than. (2019). Osmotic Dehydration of Mango Slices in Sugar Solution using Response Surface Methodology. EPH - International Journal of Applied Science (ISSN: 2208-2182), 5(8), 01-10. Retrieved from https://ephjournal.com/index.php/as/article/view/1534


The response surface methodology (RSM) was applied to optimize the effects of immersion time (90, 120and 180min), temperature (40, 50 and 60⁰C) and concentration of sucrose solution (40, 50 and 60⁰Brix) in osmotic dehydration of mango fruit slices (3mm thickness). Box-Behnken Design was used with water loss (WL, %), solid gain (SG, %), and weight reduction (WR, %) as responses. The models obtained for all the responses were significant (P≤0.05) without a significant lack of fit. The optimum conditions were temperature (50°C), immersion time (2hr), concentration of sucrose solution (56.756⁰Brix) in order to obtain WR of(  32.75 g/100g initial sample), SG of (18.799g/100g initial sample) and WL of  (51.551g/100g initial sample), respectively


Download data is not yet available.


  1. Giraldo GG, Duque C A, García C L. Combining drying methods for candy mango (Mangifera indica) var. Kent.Vitae. 2005; 12 (2):5-12
  2. Moreno A, León D, Giraldo G, Ríos E. Estudio de la cinética fisicoquímica del mango (Mangifera indica L. Var. Tommy Atkins) tratado por métodos combinados de secado. Dyna. 2010; 77 (162): 75-84.
  3. Giraldo G, Talens P, Fito P, Chiralt A. Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. J Food Eng. 2003; 58 (1): 33-43.
  4. Enachescu-Dauthy M. Fruit and vegetable processing [on line]. FAO Agricultural Services Bulletin No. 119, Roma: Food and Agriculture Organization of the United Nations – FAO, 1995, [May 2 2019]. Available in: http://www.fao.org/docrep/V5030E/ V5030E00.htm#Contents
  5. Battcock M, Azam-Ali S. Fermented fruits and vegetables: A global perspective [en línea]. FAO Agricultural Services Bulletin No. 134, Roma, Food and Agriculture Organization of the United Nations–FAO, 1998, [May 2 2019]. Available in: http:// www.fao.org/docrep/x0560e/x0560e00.htm
  6. Tortoe, C., J. Orchard and A. Beezer, 2007. Osmotic dehydration kinetics of apple, banana and potato. Int. J. Food Sci. Technol., 42: 312-318.
  7. Raoult-Wack, A.L., 1994. Recent advances in the osmotic dehydration of foods. Trend Food Sci. Technol., 5: 255-260.
  8. Alakali, J.S., C.C. Ariahu and N.N. Nkpa. Kinetics of osmotic dehydration of mango.Journalof Food Processing and Preservation.2006; 30:597-607.
  9. Rastogi, NK and K. Raghavarao. 1997. Water and solute diffusion coefficients of carrot as a function of temperature and concentration during osmotic dehydration. Journal of Food Engineering. 34:429- 440. 100.
  10. Singh, B., Paramjit S. Panesar Vikas Nanda M B. Bera, 2008, Optimization of Osmotic Dehydration Process of Carrot Cubes in Sodium Chloride Solution, International Journal of Food Engineering, 4(2) 1-24
  11. Taiwo, K.A., M.N. Eshtiaghi, B.I.O. Ade-Omowaye and D. Knorr. Osmoticdehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Int. J. of Food Science and Technology.2003; 38: 693-707.
  12. Conway, J., F. Castaigne, G. Picard and X. Vovan.1983. Mass transfer consideration in the osmotic dehydration apples. Can.Instute of Food Science and Technology Journal. 16: 25-29.
  13. Lazarides, HN. 2001. Reasons and possibilities to control solids uptake during osmotic treatment of fruits and vegetables. pp. 33–42. In Fito, P, Chiralt, A, Barat, JM Spiess, WEL and Behsnilian D (eds.), Osmotic dehydration and vacuum impregnation: Applications in food industries USA: Technomic Publ. Co.Ltd.
  14. . Jiokap, N.Y., G.B. Nuadje, A.L. Raoult-Wack and F. Giroux, 2001. Déshydratation-imprégnation par immersion de rondelles de mangue (Mangifera indica) : influence de la température et de la concentration de la solution sur les cinétiques de certains éléments constitutifs du fruit. Fruits, 56: 169-177.
  15. Azoubel, P.M. and F. Oliveira da Silva, 2008. Optimisation of osmotic dehydration of 'Tommy Atkins' mango fruit. Int. J. Food Sci. Technol., 43: 1276-1280.
  16. Singh, B., P.S. Panesar and V. Nanda, 2008. Osmotic dehydration kinetics of carrot cubes in sodium chloride solution. Int. J. Food Sci.
  17. Technol., 43: 1361-1370.
  18. Falade, K.O. and T.A. Adelakun, 2007. Effect of pre-freezing and solutes on mass transfer during osmotic dehydration and colour of oven-dried African star apple during storage. Int. J. Food Sci.Technol., 42: 394-402.
  19. Taiwo, K.A., M.N. Eshtiaghi, B.I.O. Ade- Omowaye and D. Knorr, 2003. Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Int. J. Food Sci. Technol., 38: 693-707.
  20. Azoubel, P.M. and F. Murr. 2003. Optimization of osmotic dehydration of cashew apple (Anacardium occidentale L.) in sugar solutions. Food Sci. Technol. Int. 9(6), 427-433.
  21. Corzo, O , Gomez, E.R, 2004.,Optimization of osmotic dehydration of cantaloupe using desired function methodology, Journal of Food Engineering, 64, 213–219.
  22. Valdez-Fragoso, A., S.I. Martínez-Monteagudo, F. Salais-Fierro, J. Welti-Chanes, and H. Mújica-Paz. 2007. Vacuum pulseassisted pickling whole jalapeño pepper optimization. J. Food Eng. 79(4), 1261-1268.
  23. Ozdemir, M., B. Ozen, L. Dock, and J. Floros. 2008. Optimization of osmotic dehydration of diced green peppers by response surface methodology. LTW - Food Sci. Technol. 41(10), 2044-2050.
  24. Chauhan, O.P., A. Shah, A. Singh, P.S. Raju, and A.S. Bawa. 2009. Modeling of pretreatment protocols for frozen pineapple slices. Food Sci. Technol. LEB. 42(7), 1283-1288.
  25. Singh B, Kumar A, Gupta AK. (2007). Study of mass transfer kinetics and effective diffusivity during osmotic dehydration of carrot cubes, Journal Food Engineering; 79: 471–480.
  26. Box, G. E., Behnken, D. W., 1960, Some new three level designs for the study of quantitative three variables, Technometrics,2:455-475.
  27. Montgomery, D. Diseño y análisis de experimentos. (1991). 3th ed. Iberoamérica, Mexico DF.
  28. Lombard GE, Oliveira JC, Fito P, Andrés A. Osmotic dehydration of pineapple as a pre-treatment for further drying. J Food Eng.
  29. ; 85 (2): 277-84.
  30. Baljeet Singh Yadav & Ritika B. Yadav & Monika Jatain (2012) Optimization of osmotic dehydration conditions of peach slices in sucrose solution using response surface methodology. J Food Sci Technol: 49(5):547–555.
  31. Manivannan P, Rajasimman M (2008) Osmotic dehydration of beetroot in salt solution: optimization of parameters through statistical experimental design. Int J Chem Biomol Eng 1(4):215–222.
  32. Lazarides, H. N., Katsanidis, E., & Nickolaidis, A. (1995). Mass transfer kinetics during osmotic pre-concentration aiming at minimal solid uptake. Journal of Food Engineering, 25, 151-166.
  33. Ertekin, F. K., & Cakaloz, T. (1995). Osmotic dehydration of peas: I. influence of osmosis on drying behavior and product quality. Journal of Food Processing and Preservation, 20, 105-119.
  34. Jain S.K, Verma R.C., Murdia L.K., Jain H.K.,Sharma G.P, 2011, Optimization of process parameters for osmotic dehydration of papaya cubes, Journal Food Science Tech.48(2):211–217.