Hematological and cytogenetic factors modulating the severity of the Sickle-cell disease at the University Hospital Sourô Sanou

  • Sawadogo S.
  • Kissou S.A.
  • Kouldiati J.
  • Traoré -Sawadogo H.
  • Kafando E.
  • Nacro B.
Keywords: sickle cell disease, genetic variants at ɣ loci modifiers, Haplotypes, genotype β, SNPs, G6PD deficiency, UGTA1 mutations

Abstract

Introduction
Sickle cell disease is a monogenic disease with variables clinicals manifestations and various complications. This variability is related to the phenotype, the intracellular hemoglobin concentration, the importance of fetal hemoglobin, the quality of the Therapeutic outlet, and association with others pathologies: membrane abnormalities, G6PD’s deficiency, Gilbert ‘s disease etc. ...it is a prospective study of twelve major sickle cell disease affected children on hematological and genetic factors modulating the severity of their illness.
Materials and Methods 

Twelve major sickle cell disease affected children were included in this study. The following tests were made for each of them: -A full blood count with manual blood smears reading.
-Identification of their beta's Haplotypes by RFLP followed by PCR.
-A search of the mutation of the sixth codon of the beta gene and a search of rearrangements of alpha locus were executed.
The most common factors influencing the synthesis of fetal hemoglobin in the African context were sought by molecular biology. They were: BCL11A (rs10189857, rs1427407) HMIP (rs9399137) Xmn1 (rs7482144). Some specific mutations responsible for the disease of Gilbert and G6PD deficiency negatively modulate the evolution of sickle cell disease were studied by molecular biology aussi.
Results
The full blood counts with blood smear revealed regenerative microcytic hypochromic: anemia; aplastic microcytic hypochromic anemia and regenerative normochromic normocytic anemia 

 The Giants' polynuclears; larges platelets and even macropolycytes probably related to a deficiency in folic acid.
The attendance of hypercytoses (Polynucléosis, thrombocytosis, hyperréticulocytose) and erythroblastosis are amenable to treatment with hydroxyuré.
The presence of Howell Jolly's body witness functional asplenia, mononucleosis and trophozoïte of Plasmodium means that the anti-infection prevention must be rigorous.
The beta loci Genotyping showed: six compounds heterozygous S / C with five Haplotypes Benin / Cameroon and one haplotype Senegal / Cameroon; six homozygous s / s including four  Haplotypes Benin / Benin, two Haplotypes Benin / Senegal.
No patient has alone three mutations (BCL11A, HMIP, and Xmn1) support for synthesis of fetal hemoglobin.
 Four patients have α-3, 7 type of thalassemia .For G6PD’s deficiency, a hemizygous A- and a conductor A- were diagnosed. The research for favorable mutations of UGTA1 to Gilbert's disease found three cases.
Conclusion
Sickle cell disease is modulated by several genetic factors that it is useful to know for adequate therapeutic management.

Author Biography

Sawadogo S.

Laboratoire d’hématologie département des laboratoires CHU Souro Sanou 01 BP 676 Bobo-Dioulasso 01 Burkina Faso

References

1. Mattioni S. SKS, Girot R., Lionnet F. Les hémoglobines normales et pathologiques. Revue Francophone des Laboratoires. Avril 2016(481):41-8.
2. Touboul C. BD, Pissard S. Diagnostic prénatal de la drépanocytose. Mt Pédiatrie. 2008;11(1):12-6.
3. Girot R. BP, Binet J-L., Vacheron A., Queneau P., Sraer J-D. . La drépanocytose chez l'enfant en 2004. Bulletin de l'Académie nationale de médecine. 2004;188(3): 491-506
4. Akhavan-Niaki H. BA, Azizi M. Beta Globin Frameworks in Thalassemia Major Patients from North Iran. Iran J Pediatr. 2012 Sep;22 (3):297-302.
5. Labie D. L’expression de l’hémoglobine fœtale est sous le contrôle du répresseur BCL11A. Med Sci (Paris). 2009 May;25(5):457-60.
6. Bhanushali AA PP, Nair D, Verma H, Das BR.,. Genetic variant in the BCL11A (rs1427407), but not HBS1-MYB (rs6934903) loci associate with fetal hemoglobin levels in Indian sickle cell disease patients. Blood Cells Mol Dis. 2015 Jan;54(1):4-8.
7. Pule GD. NBV, Chetcha Chemegni B., Kengne AP., Antonarakis S., Wonkam A. Association between Variants at BCL11A Erythroid-Specific Enhancer and Fetal Hemoglobin Levels among Sickle Cell Disease Patients in Cameroon: Implications for Future Therapeutic Interventions. OMICS. 2015 Oct;19(10):627-31.
8. sebastiani P. FJ, Alsultan A.,Wang S.,Edward HL.,Shappell H., et al.,. BCL11A enhancer Haplotypes and fetal hemoglobin in sickle cell anemia. Blood cell Mol Dis. 2015 Mars;54(3):224-30.
9. Galarneau G. PCD, Sankaran V.G.,Orkin S.H., Hirschhorn J.N., Lettre G. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nature Genetics. 2010;42:1049-51.
10. Lettre G. SVG, Bezerra M. A. C., Araujo A. S., Uda M., Sanna S., Cao A., et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Nat Acad Sci 2008;105:11869-74.
11. Menzel S. GC, Gut I., Matsuda F., Yamaguchi M., Heath S., et al. AQTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nature Genetics. 2007;39:1197 - 9.
12. Gieger C. RA, Cvejic A., Tang W., Porcu E., Pistis G.et al,. New gene functions in megakaryopoiesis and platelet formation. Nature 2011;480:201-8.
13. Suh Y CC. Single Nucleotide Polymorphisms (SNPs): Detection, Interpretation, and Applications. Mutat Res. 2005 Jun 3;573(1-2):1-2.
14. Cardoso G.L. DIG, Da Silva A.N.L.M., Cunha D.A., Da Silva Junior J.S., Uchôa C.T.C., et al. DNA polymorphisms at BCL11A, HBS1L-MYB and Xmn1-HBG2 site loci associated with fetal hemoglobin levels in sickle cell anemia patients from Northern Brazil. Blood Cells, Molecules and Diseases 53 (2014):176-9.
15. De La Vega F.M. LKD, Rhodes R.M. Wenz M.H. Assessment of two flexible and compatible SNP genotyping platforms: TaqMan® SNP Genotyping Assays and the SNPlex™ Genotyping System. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2005;573:111-35.
16. Danjou F. FM, Anni F., Satta S., Demartis F., Perseu L., et al. A genetic score for prediction of beta-thalassemia severity. Haematologica 2015 Apr;100(4):452-7.
17. Muszlak M. PS, Badens C.,Chamouine A.,Maillard O.,Thuret I. Genetic modifiers of sickle cell disease: A genotype -phenotype relationship study in cohort of 82 children on Mayotte Island. Hemoglobin. 2015;39(3):156-61.

18. Old J HC, Traeger-Synodinos J, et al. Prevention of Thalassaemias and Other Haemoglobin Disorders. Laboratory Protocols [Internet] 2nd edition Nicosia, Cyprus: Thalassaemia International Federation. 2012;2.
19. Lee Y-J. Park S.S. KJY, Cho H.I. RFLP Haplotypes of beta-globin gene complex of beta-thalassemic chromosomes in Koreans. J Korean Med Sci. 2002 Aug;17(4):475-8.
20. Chaar V. KL, Diara J.P., Leturdu C., Elion J., Krishnamoorthy et al. Association of UGTA1 polymorphism with prevalence and age at onset of cholelithiasis in sickle cell anemia. Haematologica/the hematology Journal. 2005;90(2):188-93.
21. Horsfall L.J. ZD, Tarekegn A., Bekele E., Thomas M.G., Bradman N. et al. Prevalence of Clinically Relevant UGT1A Alleles and Haplotypes in African Populations. Annals of Human Genetics. 2011;75:236-46.
22. Labie D. Les mécanismes de régulation de l’hémoglobine fœtale. Hématologie ; . 2010;16(3):235-43.
23. Gabriel A. PJ. Sickle-cell anemia: A look at global Haplotype distribution. Nature education.3(3):2.
24. Mtatiro S.N. MJ, Mmbando B., Thein S.L., Menzel S., Cox S.E. Genetic variants at HbF‐modifier loci moderate anemia and leukocytosis in sickle cell disease in Tanzania. Am J Hematol. 2015 Jan;90(1):E1-E4.
25. Nkashama G.M. WGKA, Mulangu A.M., Nkashama G.M., Kupa B.K., Numbi 0.L. De l'hémoglobine SS à SF: intérêt de l'hydroxyuré dans la prise en charge de la drépanocytose chez 2 enfants congolais et revue de la littérature. Pan Afr Med J. 2015;21:124.
26. Blanc C., , Janoura S., Ricolfi F., Chavent A., Osseby G-V., Giroud M.et al Maladie de Moyamoya : aspects diagnostiques, cliniques, évolutifs et thérapeutiques chez 10 patients. Revue Neurologique 2015;171(1):32-3.
27. Scott M.R. SER. Moyamoya Disease and Moyamoya syndrome. N Engl J Med. 2009;360:1226-37.
28. Smith E.R. SRM. Moyamoya: Epidemiology, Presentation, and Diagnosis. Neurosurg Clin N am. 2010;21:543-51.
29. Franco D. DD. Faut-il opérer les malades atteints de lithiase vésiculaire asymptomatique? Médecine/sciences 85(1):91-5.
Published
2018-02-28
How to Cite
S., S., S.A., K., J., K., H., T.-S., E., K., & B., N. (2018, February 28). Hematological and cytogenetic factors modulating the severity of the Sickle-cell disease at the University Hospital Sourô Sanou. EPH - International Journal of Medical and Health Science (ISSN: 2456 - 6063), 4(2), 32-42. Retrieved from https://ephjournal.com/index.php/mhs/article/view/520