Fundamental metric expressions of a generic quadruple divided random quantity

Pierpaolo Angelini
Università “La Sapienza” di Roma
Dipartimento di Scienze Statistiche
pier.angelini@uniroma1.it

November 8, 2018

Abstract

After establishing a metric over the vector space of the bivariate random quantities which are the components of a generic quadruple divided random quantity I establish a metric over the vector space of the quadruple divided random quantities in order to show that a coherent prevision of a generic bivariate random quantity coincides with the notion of α-product. Therefore, metric properties of the notion of α-product mathematically characterize the notion of coherent prevision of a generic bivariate random quantity. I accept the principles of the theory of concordance into the domain of subjective probability for this reason. This acceptance is well-founded because the definition of concordance is implicit as well as the one of prevision of a random quantity and in particular of probability of an event. By considering quadruple divided random quantities I realize that the notion of coherent prevision of a generic bivariate random quantity can be used in order to obtain fundamental metric expressions of quadruple divided random quantities.

1 Introduction

It is necessary to distinguish logical aspects from the psychological ones related to random quantities. This distinction is methodologically fundamental ([6]). Logical aspects pertain the logic of certainty as well as the logic of the probable. They are dealt with by mathematics. The logic of certainty does not use the notion of probability ([8]). It is called so for this reason. What is objectively possible belongs to the logic of certainty and it is different from what is subjectively probable. It makes sense to express one’s subjective and non-predetermined opinion in terms of probability only in respect of what is possible or uncertain at a given instant. One always means uncertainty as a simple ignorance: it ceases only when one receives certain information. The logic of certainty is always characterized by two different and extreme aspects. The first aspect is negative because it deals with situations of non-knowledge or ignorance or uncertainty from which one determines the set of the possible alternatives of a random quantity: when a given numerical value is not either certain or impossible it is possible and it consequently belongs to such a set. The second aspect is positive because it deals

Keywords: vector homography, translation, affine tensor, antisymmetric tensor, α-product, α-norm
with the definitive certainty expressed in the form of what is certainly true or certainly false. Every possible numerical value of a random quantity definitely becomes 0 or 1 when an empirical observation, referring to it, is made. Therefore, into the logic of certainty exist certain and impossible and possible regarding to the first aspect, true = 1 and false = 0 as final answers regarding to the second aspect. Conversely, the notion of probability is of interest to an intermediate aspect which is included between the two extreme aspects characterizing the logic of certainty ([7], [9]). Indeed, the probability is distributed as a mass by a given individual over the domain of the possible alternatives before knowing which is the true alternative to be verified. This aspect is positive but it is weak and temporary because he is awaiting information which would give him the definitive certainty. Probability is an extralogical notion in the sense that it is outside of the logic of certainty ([12], [13]). The value of the notion of probability does not transcend the psychological value that such a notion has with regard to each individual. Moreover, the value of the notion of probability is not independent of such a psychological value. Therefore, a living, elastic and psychological logic is considered: it is exactly the logic of the probable. Probability calculus has a very special character in this conceptual context because common sense plays the most essential role and it is mathematically expressed as objective conditions of coherence ([15]).

2 A geometric representation of univariate random quantities

A univariate quantity \(X \) is really random for a given individual when he does not know its true numerical value. Therefore, he is in doubt between two or more than two possible values. These values belong to the set \(I(X) = \{x^1, \ldots, x^m\} \). Only one possible numerical value of \(I(X) \) will occur “a posteriori”. Each random quantity justifies itself “a priori”. Every finite partition of incompatible and exhaustive events representing a random quantity shows the possible ways in which a certain reality may be expressed. A multiplicity of possible values for every random quantity is only a formal construction that precedes the empirical observation by means of which a single value is realized among the ones of the set of the possible alternatives ([11]). Each event is a specific random quantity because it admits only two possible values. It does not admit more than two possible values like a random quantity. The same symbol \(P \) denotes both prevision of a random quantity and probability of an event ([14]). An event is conceptually a mental separation between sensations: it is actually a statement such that, by betting on it, one can establish in an unmistakable fashion whether it is true or false, that is to say, whether it has occurred or not and so whether the bet has been won or lost ([5]). It is not at all a logical restriction to consider finite partitions of incompatible and exhaustive events. If one wonders which is the event that will occur among an infinite number of them one can never verify if each statement representing a single event is true or false. These statements are infinite in number, so they do not coincide with any mental separation between sensations. Therefore, they are conceptually meaningless. I denote by \((1)_S \) a set of univariate random quantities. Every random quantity belonging to the set \((1)_S \) can be represented by a vector \(\mathbf{x} \in E_m \), where \(E_m \) is a vector space \(m \)-dimensional over the field \(\mathbb{R} \) of real numbers. It has a Euclidean structure. The different possible values of every random quantity of \((1)_S \) are \(m \) in number, where \(m \) is an integer. It turns out to be \((1)_S \subseteq E_m \). The different possible values of \(X \) belonging to the set \(I(X) \) coincide with the different components of \(\mathbf{x} \) and they
can indifferently be denoted by a covariant or contravariant notation after choosing an orthonormal basis of E_m. Such a basis is given by $\{ e_j \}, \; j = 1, \ldots, m$. I should exactly speak of components of x having upper indices or lower indices because I deal with an orthonormal basis of E_m. Indeed, the usage of the terms covariant and contravariant is geometrically meaningless because the covariant components of x coincide with the contravariant ones. Nevertheless, it is appropriate the usage of this notation referring to them because a specific meaning regarding to them will be introduced. Having said that I will continue to use these terms. Thus, I choose a contravariant notation with respect to the components of x so it is possible to write $x = (x^i)$ while I choose a covariant notation with respect to the components of p so it is possible to write $p = (p_i)$, where p_i represents a subjective probability assigned to $x^i, \; i = 1, \ldots, m$, by a given individual at a given instant and with a certain set of information. Hence, different individuals whose state of knowledge is hypothetically identical may choose different p_i because each of them may subjectively give greater attention to certain circumstances than to others ([10]). A given individual is into the domain of the logic of certainty when he considers only $x \in E_m$ while he is into the domain of the logic of the probable when he considers an ordered pair of vectors. It is expressed by $(x, p) \subseteq E_m$. Thus, a prevision of X is given by
\[
P(X) = X = x^i p_i,
\] (1)
where I imply the Einstein summation convention. This prevision is coherent when one has $0 \leq p_i \leq 1, \; i = 1, \ldots, m$, as well as $\sum_{i=1}^{m} p_i = 1$ ([11]). This implies that a coherent prevision of X always satisfies the inequality $\inf P(X) \leq P(X) \leq \sup P(X)$ and it is also linear, that is to say, one has $P(aX + bY + cZ + \ldots) = aP(X) + bP(Y) + cP(Z) + \ldots$ for any finite number of univariate random quantities, with a, b, c, \ldots any real numbers. In particular, from $P(X + Y) = P(X) + P(Y)$ follows an additivity property of P. A coherent prevision of X can be expressed by means of the vector $\bar{x} = (\bar{x}^i)$ that allows to define the transformed random quantity χt: it is represented by the vector $\chi t = x - \bar{x}$ whose contravariant components are given by
\[
x^i t = x^i - \bar{x}^i.
\] (2)
This linear transformation of X is a change of origin or translation. A coherent prevision of the transformed random quantity χt is necessarily given by
\[
P(\chi t) = (x^i t - \bar{x}^i) p_i = 0.
\] (3)
The α-norm of the vector x is expressed by
\[
\|x\|_\alpha^2 = (x^i)^2 p_i.
\] (4)
It is the square of the quadratic mean of X. It turns out to be $\|x\|_\alpha^2 \geq 0$. In particular, one writes $\|x\|_\alpha^2 = 0$ when the possible values of X are all null: this is a degenerate case. Hence, one says that the α-norm of the vector x is strictly positive. The α-norm of the vector representing χt is given by
\[
\|\chi t\|_\alpha^2 = (\chi t)^2 p_i = \sigma_X^2.
\] (5)
It represents the variance of X in a vectorial fashion. I will later explain why I use the term α-norm.
3 A geometric representation of bivariate random quantities

I denote by \((2)S^{(2)} \) a set of bivariate random quantities and by \(X_{12} \equiv \{ X_1, X_2 \} \) a generic bivariate random quantity of this set. A pair of univariate random quantities \((X_1, X_2)\) evidently represents an ordered pair of univariate random quantities which are the components of \(X_{12} \). Each element of \((2)S^{(2)}\) can be represented by an affine tensor of order 2 denoted by \(T \in E_{m}^{(2)} = E_{m} \otimes E_{m} \). Therefore, the possible values of \(X_{12} \) coincide with the numerical values of the components of \(T \). The dimension of \(E_{m} \) as well as the number of the different possible values of every univariate random quantity of \(X_{12} \) is expressed by \(m \). Thus, \(T \) is an element of a vector space \(m^2 \)-dimensional. Moreover, it turns out to be \((2)S^{(2)} \subseteq E_{m}^{(2)} \). I choose an orthonormal basis of \(E_{m} \) in order to represent the possible values of \(X_{12} \). These values coincide with the contravariant components of \(T \) so it is possible to write

\[
T = (1)x \otimes (2)x = (1)x^i (2)x^j e_i \otimes e_j.
\] (6)

The tensor representation of \(X_{12} \) expressed by (6) depends on \((X_1, X_2)\). Indeed, if one considers a different ordered pair \((X_1', X_2')\) of univariate random quantities one obtains a different tensor representation of \(X_{12} \) expressed by

\[
T = (2)x \otimes (1)x = (2)x^i (1)x^j e_i \otimes e_j
\] (7)

because the tensor product is not commutative ([22], [23]). Therefore, the components of \(T \) expressed by (7) are not the same of the ones expressed by (6). Both these formulas express an affine tensor of order 2 whose components are different. I have consequently \((1)x \otimes (2)x \neq (2)x \otimes (1)x\). I must at the same time consider (6) and (7) in order to release a tensor representation of \(X_{12} \) from any ordered pair of univariate random quantities which can be considered, \((X_1, X_2)\) or \((X_1', X_2')\). This means that the possible values of a bivariate random quantity must be expressed by the components of an antisymmetric tensor of order 2. It is expressed by

\[
T = \sum_{i_1 < i_2} ((1)x^i (2)x^j - (1)x^j (2)x^i) e_{i_1} \otimes e_{i_2}.
\] (8)

The number of the components of an antisymmetric tensor of order 2 is evidently different from the one of the components of an affine tensor of the same order. Thus, a tensor representation based on an antisymmetric tensor of order 2 does not depend either on \((X_1, X_2)\) or \((X_1', X_2')\). I choose it in order to represent a generic bivariate random quantity \(X_{12} \). Therefore, \(12f\) is an antisymmetric tensor of order 2 called the tensor of the possible values of \(X_{12} \). The contravariant components of \(12f\) expressed by

\[
12f^{(i_{1}i_{2})} = \begin{vmatrix} (1)x^{i_1} & (1)x^{i_2} \\ (2)x^{i_1} & (2)x^{i_2} \end{vmatrix}
\] (9)

represent the possible values of \(X_{12} \) in a tensorial fashion. These components are equal to 0 when they have equal indices. It is evident that the vector space of the antisymmetric tensors of order 2 does not have a dimension equal to \(m^2 \) but it has a dimension equal to \(\binom{m}{2} \). Now, I must introduce the probabilities into this geometric representation of \(X_{12} \). It is possible to say that the tensor of the joint probabilities \(p = (p_{i_1i_2}) \) is an
In particular, the dot product of two vectors, \(\mathbf{x} \) and \(\mathbf{y} \) is a vector homography whose expressions are obtained by applying the Einstein summation convention. Then, the components of a type of vector to the covariant components of another type by means of the tensor of the joint probabilities under consideration. Indeed, the covariant components of \(12f \) represent those probabilities related to the possible values of each marginal univariate random quantity of \(X_{12} \). These components are obtained by summing the probabilities related to the ordered pairs of components of \((1)\mathbf{x} \) and \((2)\mathbf{x} \): putting the joint probabilities into a two-way table I consider the totals of each row and the totals of each column of the table as covariant components of \(12f \). In analytic terms one has \((1)\mathbf{x}^i p_{ij1} = (1)\mathbf{x}_j \) and \((2)\mathbf{x}^i p_{ij2} = (2)\mathbf{x}_j \) by virtue of a specific convention that I introduce: when the covariant indices to right-hand side vary over all their possible values I obtain two sequences of values representing those probabilities related to the possible values of each marginal univariate random quantity of \(X_{12} \). They are the covariant components of \(12f \). It turns out to be

\[
12f_{(ij2)} = \begin{vmatrix} (1)x^1_1 & (1)x^1_2 \\ (2)x^1_1 & (2)x^1_2 \end{vmatrix} = \begin{vmatrix} (1)x^2_1 p_{1i2} & (1)x^2_2 p_{1i2} \\ (2)x^2_1 p_{1i2} & (2)x^2_2 p_{1i2} \end{vmatrix}.
\]

(10)

The covariant indices of the tensor \(p \) can be interchanged when it is necessary so one has, for instance, \((1)x^i p_{ij2} = (1)x^i p_{ij1} \).

4 An essential metric of univariate random quantities

The vector space of univariate random quantities which are the components of bivariate random quantities is denoted by \((2)S^{(1)} \subseteq E_m \). These univariate random quantities are represented by two vectors, \((1)\mathbf{x} \) and \((2)\mathbf{x} \), belonging to \(E_m \). I deal with two ordered \(m \)-tuples of real numbers when I am into the objective domain of the possible alternatives. An affine tensor \(p \) of order 2 must be added to the two vectors under consideration when I pass from the domain of the possible alternatives to the one of the evaluation of probabilities. Therefore, I always consider a triple of elements. I transform the vector \((2)\mathbf{x} \) into the vector \((2)\mathbf{x}' \) by means of the tensor \(p \). Hence, it is possible to write the following dot product

\[
(1)\mathbf{x} \cdot (2)\mathbf{x}' = (1)x^i (2)x'^i p_{ij2} = (1)x^i (2)x'_1 .
\]

(11)

I note that

\[
(2)x^i \cdot (2)x = (2)x^i p_{ij2} = (2)\mathbf{x}'
\]

(12)

is a vector homography whose expressions are obtained by applying the Einstein summation convention. Then, the \(\alpha \)-product of two vectors, \((1)\mathbf{x} \) and \((2)\mathbf{x} \), is defined as a dot product of two vectors, \((1)\mathbf{x} \) and \((2)\mathbf{x}' \), so I write

\[
(1)\mathbf{x} \odot (2)\mathbf{x} = (1)\mathbf{x} \cdot (2)\mathbf{x}'.
\]

(13)

In particular, the \(\alpha \)-norm of the vector \((1)\mathbf{x} \) is given by

\[
\| (1)\mathbf{x} \|_\alpha^2 = (1)x^i (1)x^j p_{ij1} = (1)x^i (1)x'_i .
\]

(14)
I use the term \(\alpha \)-norm because I refer to the \(\alpha \)-criterion of concordance introduced by Gini (\cite{24}, \cite{25}). There actually exist different criteria of concordance shown by Gini in addition to the \(\alpha \)-criterion. Nevertheless, by considering quadratic measures of concordance it always suffices to use the \(\alpha \)-criterion. When I pass from the notion of \(\alpha \)-product to the one of \(\alpha \)-norm I say that the corresponding possible values of the two univariate random quantities under consideration are equal. I also say that the corresponding probabilities are equal. Therefore, the covariant components of the tensor \(p = (p_{ij}) \) having different numerical values as indices are null. Thus, I say that the absolute maximum of concordance is realized. Given the vector \(y = (1)x + \lambda (2)x \), with \(\lambda \in \mathbb{R} \), its \(\alpha \)-norm is expressed by

\[
\|y\|_\alpha^2 = \|1\|_\alpha^2 x^2 + 2\lambda [\|1\|_\alpha x] (\|2\|_\alpha x) + \lambda^2 \|2\|_\alpha x^2. \tag{15}
\]

It is always possible to write \(\|y\|_\alpha^2 \geq 0 \). Moreover, the right-hand side of (15) is a quadratic trinomial whose variable is \(\lambda \), so I must consider a quadratic inequation. All real numbers fulfill the condition stated in the form \(\|y\|_\alpha^2 \geq 0 \). This means that the discriminant of the associated quadratic equation is non-positive. I write

\[
\Delta_\lambda = 4\|1\|_\alpha^2 (\|2\|_\alpha x)^2 - \|1\|_\alpha^2 \|2\|_\alpha x \leq 0.
\]

Given \(\Delta_\lambda \leq 0 \), it turns out to be

\[
(\|1\|_\alpha^2 (\|2\|_\alpha x)^2) \leq \|1\|_\alpha^2 \|2\|_\alpha x^2,
\]

so I obtain

\[
\|1\|_\alpha^2 (\|2\|_\alpha x)^2 \leq \|1\|_\alpha^2 \|2\|_\alpha x^2. \tag{16}
\]

The expression (16) is called the Schwarz’s \(\alpha \)-generalized inequality. When \(\lambda = 1 \) one has \(y = (1)x + (2)x \). By replacing \((1)x (\|2\|_\alpha x) \) into (15) with \(\|1\|_\alpha x \|2\|_\alpha x \) one has the square of a binomial given by

\[
\|1\|_\alpha^2 (\|2\|_\alpha x)^2 = \|1\|_\alpha^2 x^2 + 2\|1\|_\alpha^2 x + \|2\|_\alpha^2 x^2,
\]

so one obtains

\[
\|1\|_\alpha^2 (\|2\|_\alpha x)^2 \leq \|1\|_\alpha^2 x + \|2\|_\alpha^2 x. \tag{17}
\]

The expression (17) is called the \(\alpha \)-triangle inequality. Dividing by \(\|1\|_\alpha \|2\|_\alpha x \) both sides of (16) one has

\[
\frac{\|1\|_\alpha^2 x}{\|1\|_\alpha^2 x} \leq 1,
\]

that is to say,

\[
-1 \leq \frac{\|1\|_\alpha^2 x}{\|1\|_\alpha^2 x} \leq 1,
\]

so there exists a unique angle \(\gamma \) such that \(0 \leq \gamma \leq \pi \) and such that

\[
\cos \gamma = \frac{\|1\|_\alpha^2 x}{\|1\|_\alpha^2 x} \tag{18}
\]

It is possible to define this angle to be the angle between the two vectors \((1)x \) and \((2)x \). By considering the expression (13) it is also possible to define it to be the angle between \((1)x \) and \((2)x \).
5 An essential metric of bivariate random quantities

I deal with the vector space denoted by \(S(2)\), whose elements are antisymmetric tensors of order 2. Nevertheless, by introducing the notion of \(\alpha\)-product of two antisymmetric tensors of order 2 I must underline a very important point: it is not necessary to refer to the bivariate random quantity \(X_{12}\) in order to introduce that antisymmetric tensor whose covariant components are represented like into the expression (10). Therefore, it is also possible to consider a bivariate random quantity denoted by \(X_{34}\) as well as an antisymmetric tensor of order 2 denoted by \(\alpha\)-product. This means that one can examine the domain of the possible alternatives in a more complete fashion ([16]). Then, one has

\[
\alpha\text{-product}.\quad \text{Thus, it is possible to extend to the antisymmetric tensors } 12f \text{ and } 34f \text{ the notion of } \alpha\text{-product. This means that one can examine the domain of the possible alternatives in a more complete fashion ([16]). Then, one has}
\]

\[
12f_{(i;12)} \odot 34f_{(i;12)} = \frac{1}{2} \begin{pmatrix}
(1) x^1 & (1) x^2 \\
(2) x^1 & (2) x^2
\end{pmatrix}
\begin{pmatrix}
(3) x^1 & (3) x^2 \\
(4) x^1 & (4) x^2
\end{pmatrix}
\begin{pmatrix}
(3) x^1 p_{i1} & (3) x^1 p_{i2} \\
(4) x^1 p_{i1} & (4) x^1 p_{i2}
\end{pmatrix},
\]

where it appears \(\frac{1}{2}\) because one has always two permutations into the two determinants: one of these permutations is "good" when it turns out to be \(i_1 < i_2\) regarding to \((1) x^1 (2) x^2\), \((3) x^1 (4) x^2\) while the other is "no good" because it turns out to be \(i_2 > i_1\) regarding to \((1) x^2 (2) x^1\), \((3) x^2 (4) x^1\). Hence, I am in need of returning to normality by means of \(\frac{1}{2}\). Such a normality is evidently represented by \(i_1 < i_2\). I need different affine tensors of order 2 in order to make a calculation given by the expression (20). These tensors of the joint probabilities allow me of defining the bivariate random quantities \(X_{13}, X_{14}, X_{23}, X_{24}\). Thus, one has

\[
12f \odot 34f = \begin{pmatrix}
(1) x^1 & (1) x^2 \\
(2) x^1 & (2) x^2
\end{pmatrix}
\begin{pmatrix}
(3) x^1 p_{i1} & (3) x^1 p_{i2} \\
(4) x^1 p_{i1} & (4) x^1 p_{i2}
\end{pmatrix},
\]

In particular, the \(\alpha\)-norm of the tensor \(12f\) is given by

\[
12f \parallel_{\alpha} = 12f_{(i;12)} = 12f_{(i;12)}^{(i;12)},
\]

so it turns out to be

\[
12f \parallel_{\alpha} = \frac{1}{2} \begin{pmatrix}
(1) x^1 & (1) x^2 \\
(2) x^1 & (2) x^2
\end{pmatrix}
\begin{pmatrix}
(3) x^1 p_{i1} & (3) x^1 p_{i2} \\
(4) x^1 p_{i1} & (4) x^1 p_{i2}
\end{pmatrix},
\]

Anyway, it is always possible to write

\[
12f \odot 34f = \begin{pmatrix}
(1) x & (1) x \\
(2) x & (2) x
\end{pmatrix}
\begin{pmatrix}
(3) x & (3) x \\
(4) x & (4) x
\end{pmatrix}
\]

as well as

\[
12f \parallel_{\alpha} = \begin{pmatrix}
(1) x \parallel_{\alpha} & (1) x \parallel_{\alpha} \\
(2) x \parallel_{\alpha} & (2) x \parallel_{\alpha}
\end{pmatrix}.
\]
The α-norm of the tensor $12f$ is again strictly positive. It is equal to 0 when the components of $12f$ are all null and when one can write $(1) x = \lambda(2) x$, with $\lambda \in \mathbb{R}$. I define the tensor f as a linear combination of $12f$ and $34f$ such that one can write $f = 12f + \lambda 34f$, with $\lambda \in \mathbb{R}$. Then, the Schwarz’s α-generalized inequality becomes

$$|12f \odot 34f| \leq \|12f\|_\alpha \|34f\|_\alpha,$$ \hspace{1cm} (26)

the α-triangle inequality becomes

$$\|12f + 34f\|_\alpha \leq \|12f\|_\alpha + \|34f\|_\alpha,$$ \hspace{1cm} (27)

while the cosine of the angle γ becomes

$$\cos \gamma = \frac{12f \odot 34f}{\|12f\|_\alpha \|34f\|_\alpha}.$$ \hspace{1cm} (28)

6 A new meaning of the notion of coherent prevision of a generic bivariate random quantity

The notion of α-product depends on three elements which are two vectors of E_m, $(1)x$ and $(2)x$, and one affine tensor $p = (p_{i12})$ of order 2 belonging to $E_m^{(2)} = E_m \otimes E_m$. Given any ordered pair of vectors, p is uniquely determined as a geometric object. This implies that each covariant component of p is always a subjective probability. It must intrinsically be coherent ([4]). With regard to some problem that may be considered it is possible that all reasonable people share each covariant component of p. Nevertheless, an opinion in terms of probability shared by many people always remains a subjective opinion. It is meaningless to say that it is objectively exact. Indeed, a sum of many subjective opinions in terms of probability can never lead to an objectively correct conclusion ([3]). Thus, given a bivariate random quantity $X_{12} \equiv \{1X, 2X\}$, its coherent prevision $P(X_{12})$ is an α-product whose metric properties remain unchanged by extending them to P. Therefore, P is an α-commutative prevision because it is possible to write

$$P(1X_2X) = P(2X_1X),$$ \hspace{1cm} (29)

P is an α-associative prevision because it is possible to write

$$P[(\lambda_1X_2X)] = P[1X(\lambda_2X)] = \lambda P(1X_2X), \forall \lambda \in \mathbb{R},$$ \hspace{1cm} (30)

P is an α-distributive prevision because it is possible to write

$$P[(1X_12X)] = P(1X_3X) + P(2X_3X).$$ \hspace{1cm} (31)

Moreover, when one writes

$$P(1X_2X) = P(2X_1X) = 0,$$ \hspace{1cm} (32)

and all possible values of $1X$ and $2X$ are not null, one says that $1X$ and $2X$ are α-orthogonal univariate random quantities. In particular, one observes that the α-distributive property of prevision implies that the covariant components of the affine tensor $p^{(13)}$ are equal to the ones of the affine tensor $p^{(23)}$. Moreover, the covariant components of the affine tensor related to the two univariate random quantities $1X + 2X$ and $3X$ are the
same of the ones of $p^{(13)}$ and $p^{(23)}$. By considering a bivariate random quantity one finally says that its prevision P is bilinear. If the possible values of the two univariate random quantities of $X_{12} \equiv \{X_{1,2}X\}$ are correspondingly equal and the covariant components of the tensor $p = (p_{ij})$ having different numerical values as indices are null, then $P(X_{12}) = P(X_{1}X) = P(X_{2}X)$ coincides with the α-norm of $(1) X = (2) X$. If $P(X_{12})$ is a coherent prevision of $X_{12} \equiv \{X_{1,2}X\}$, then its univariate random quantities, X_{1} and X_{2}, represent two separate and finite partitions of incompatible and exhaustive events whose non-negative probabilities sum to 1. These are objective conditions of coherence ([2], [19], [20]). It is evident that each covariant component of $p = (p_{ij})$ represents a probability of the joint of two events which includes a conditional probability of an event given the other. Hence, by denoting by A one of the possible values of X_{1} and by B one of the possible values of X_{2} it turns out to be $P(A \land B) = P(A)P(B|A) = P(B)P(A|B)$, with $A \land B = B \land A$, as regards each covariant component of p ([17], [18], [21]). I denoted by $A \land B = B \land A$ the logical product of two events while I considered $P(A \land B)$ as a probability of their joint. In general, from the notion of conditional probability denoted by $P(E|H)$ it is always possible to deduce that the notion of subjective probability is relative to the current state of information of a given individual represented by H. This operationally means that $P(E|H)$ is the price to be paid for a conditional bet which is annulled if H does not occur. Conversely, this conditional bet is won if H and E occur while it is lost if H occurs and E does not occur. I evidently considered a tri-event denoted by $H|E$ with values $1|1 = 1, 0|1 = 0, 0|0 = 1|0 = \emptyset$ into the logic of certainty. It represents only a formal variation with respect to the starting delimitation because $\emptyset = void$ is added to the two starting values $1 = true$ and $0 = false$. Any tri-event can always be expressed by means of two events from a conceptual point of view. This means that all tri-events are only formally meaningful. Given a transformed bivariate random quantity $X_{12}^t \equiv \{X_{1}^t, X_{2}^t\}$, its coherent prevision $P(X_{12}^t)$ is again an α-product whose metric properties remain unchanged by extending them to P. In particular, when it turns out to be $p_{ij} = p_{i}p_{j}, \forall i, j \in I$, with $I \equiv \{1, 2, \ldots, m\}$, one observes that a stochastic independence exists. Hence, one obtains $P(X_{12}^t) = 0$, that is to say, the vectors $(1) t$ and $(2) t$ are α-orthogonal. One equivalently says that the covariance of $(1) X$ and $(2) X$ is equal to 0.

7 A quadruple divided random quantity

In general a quadruple random quantity always consists of four univariate random quantities. The number of the possible distinct values of each univariate random quantity is again equal to m, where m is now an integer ≥ 4. Nevertheless, a quadruple divided random quantity always consists of two bivariate random quantities denoted by X_{12} and X_{34} in this context. I precisely denote by $X_{34}^{12} \equiv \{X_{12}, X_{34}\}$ a quadruple divided random quantity. I actually deal with six bivariate random quantities denoted by $X_{12}, X_{13}, X_{14}, X_{23}, X_{24}$ and X_{34} but two of these six bivariate random quantities, X_{12} and X_{34}, play a different logical role in relation to the one played by X_{13}, X_{14}, X_{23} and X_{24}. I must consequently consider six affine tensors of order 2 denoted by $p^{(12)}, p^{(13)}, p^{(14)}, p^{(23)}, p^{(24)}$ and $p^{(34)}$: they are the tensors of the joint probabilities whose covariant components represent those probabilities related to the ordered pairs of components of vectors representing the marginal univariate random quantities of each bivariate random quantity under consideration. There exist different cases justifying an interest in this type of random quantity. For instance, it is possible to examine two bivariate random quantities like a shot. The first bivariate random quantity is $X_{12} \equiv \{X_{1,2}X\}$ and
it is related to a given individual, where X_1 represents a univariate random quantity whose possible values are his assets while X_2 represents a univariate random quantity whose possible values are his incomes. The second bivariate random quantity is $X_{34} \equiv \{X_3, X_4\}$ and it is related to another individual, where X_3 represents a univariate random quantity whose possible values are again his assets while X_4 represents a univariate random quantity whose possible values are again his incomes. After considering $p^{(12)}$ and $p^{(34)}$ I am able to measure any quantitative difference between X_1 and X_2. Anyway, such a difference can also depend on relationships between X_1, X_3, X_4 and X_{34}. Moreover, by considering $p^{(14)}$ related to X_{14} and $p^{(23)}$ related to X_{23} I can suppose that X_{12} and X_{34} are two bivariate random quantities such that it turns out to be $X_2 = X_4$. Thus, it is evident that it is possible to examine assets of the two individuals under consideration in a more meaningful fashion. By supposing that X_{12} and X_{34} are two bivariate random quantities such that it turns out to be $X_1 = X_3$ one realizes that to examine all six bivariate random quantities denoted by X_{12}, X_{13}, X_{14}, X_{23}, X_{24} and X_{34} is then justified.

8 A geometric representation of a quadruple divided random quantity

The components of $X_{12}^{(2)} \equiv \{X_{12}, X_{34}\}$ are always two autonomous bivariate random quantities. Each bivariate random quantity is geometrically represented by an antisymmetric tensor of order 2 belonging to $\mathbb{E}_m^{(2)} \subseteq \mathbb{S}^{(2)}$. Given an orthonormal basis of E_m I must at first consider two affine tensors of order 2 expressed by

$$ (1) X \otimes (2) X = (1)^i (2)^j X_{ij} e_i \otimes e_j \quad (33) $$

and

$$ (3) X \otimes (4) X = (3)^i (4)^j X_{ij} e_i \otimes e_j \quad (34) $$

where each tensor under consideration belongs to $E_m^{(2)} = E_m \otimes E_m$, in order to represent the possible values of $X_{12}^{(2)} \equiv \{X_{12}, X_{34}\}$ in a tensorial fashion. An antisymmetric tensor of order 2 representing X_{12} can always be written as

$$ 12 f^{(1i)j} e_i \wedge e_j = 12 f^{(1i)j} e_{(i)j}, \quad (35) $$

where $e_i \wedge e_j = e_{(i)j}$ represents a basis of the vector space whose elements are antisymmetric tensors of order 2. Therefore, an antisymmetric tensor of the same order representing X_{34} can be expressed by

$$ 34 f^{(3i)j} e_i \wedge e_j = 34 f^{(3i)j} e_{(i)j}, \quad (36) $$

By considering at the same time (33), (34), (35) and (36) I obtain

$$ 12 f = 12 f^{(1i)j} 34 f^{(3i)j} e_{(i)j} \otimes e_{(i)j} \quad (37) $$

as a tensorial representation of the possible values of $X_{12}^{(2)} \equiv \{X_{12}, X_{34}\}$. The same thing obviously goes when one considers $X_{34}^{(2)} \equiv \{X_{34}, X_{12}\}$ instead of $X_{12}^{(2)} \equiv \{X_{12}, X_{34}\}$, so one obtains

$$ 12 f = 34 f^{(3i)j} 12 f^{(1i)j} e_{(i)j} \otimes e_{(i)j} \quad (38) $$
When one has \(\langle i_1 i_2 \rangle = \langle i_3 i_4 \rangle\) it turns out to be
\[
34 f \quad 12 f (i_1 i_2) E_{(i_3 i_4)} \otimes E_{(i_1 i_2)} = 34 f \quad 12 f (i_3 i_4) E_{(i_1 i_2)} \otimes E_{(i_1 i_2)},
\]
so I finally write
\[
\frac{12}{34} f = \frac{12}{34} f (i_1 i_2) 34 f (i_3 i_4) - \frac{12}{34} f (i_3 i_4) 34 f (i_1 i_2) E_{(i_1 i_2)} \otimes E_{(i_1 i_2)}.\]

The tensor \(\frac{12}{34} f\) given by (40) is an antisymmetric tensor of order 2 whose contravariant components are expressed by
\[
\frac{12}{34} f (i_1 i_2, i_3 i_4) = \frac{12}{34} f (i_1 i_2) 34 f (i_3 i_4) - \frac{12}{34} f (i_3 i_4) 34 f (i_1 i_2),
\]
with \(i_1 < i_2, i_3 < i_4\) as well as \(i_1 < i_3, i_2 < i_4\). By denoting by \((2)_S \wedge (4)\) the vector space of the tensors representing quadruple divided random quantities one obtains \((2)_S \wedge (4) = (2)^{S(2)/\wedge} (2)_S \wedge (2)^{S(2)/\wedge}\). The dimension of this vector space is equal to \(m^4\). After considering the tensors \(p^{(12)}\) and \(p^{(34)}\) which are related to the two bivariate random quantities \(X_{12}\) and \(X_{34}\) of \(X_{12}\) I can write the covariant components of the antisymmetric tensor representing a generic quadruple divided random quantity denoted by \(X_{12}\): they are given by
\[
\frac{12}{34} f (i_1 i_2, i_3 i_4) = \frac{12}{34} f (i_1 i_2) 34 f (i_3 i_4) - \frac{12}{34} f (i_3 i_4) 34 f (i_1 i_2),
\]
and they include four sequences of values: two sequences are related to \(12 f\) while two sequences are related to \(34 f\). The two sequences which are related to \(12 f\) represent those probabilities related to the possible values of each marginal univariate random quantity of \(X_{12}\) while the two sequences which are related to \(34 f\) represent those probabilities related to the possible values of each marginal univariate random quantity of \(X_{34}\).

9 **A metric of quadruple divided random quantities**

A generic quadruple divided random quantity denoted by \(X^{12}_{12}\) is represented by an antisymmetric tensor of order 2 denoted by \(\frac{12}{34} f\) and belonging to \((2)_S \wedge (4)\). The notion of \(\alpha\)-product implies that I am able to introduce another antisymmetric tensor of order 2 belonging to \((2)_S \wedge (4)\) and denoted by \(\frac{56}{78} f\). This operationally means that I am able to study the domain of the possible alternatives in a more complete fashion. Therefore, an \(\alpha\)-product between \(\frac{12}{34} f\) and \(\frac{56}{78} f\) is given by
\[
\frac{12}{34} f (i_1 i_2, i_3 i_4) \otimes \frac{56}{78} f (i_3 i_4, i_3 i_4) = \frac{1}{2} \frac{12}{34} f (i_1 i_2) 34 f (i_3 i_4) \frac{56}{78} f (i_3 i_4, i_3 i_4) \frac{56}{78} f (i_1 i_2, i_3 i_4) \frac{56}{78} f (i_3 i_4, i_3 i_4).
\]

I can also write
\[
\frac{12}{34} f (i_1 i_2, i_3 i_4) \otimes \frac{56}{78} f (i_1 i_2, i_3 i_4) = \frac{12}{34} f \otimes \frac{56}{78} f \frac{12}{34} f \otimes \frac{56}{78} f \frac{12}{34} f \otimes \frac{56}{78} f \frac{12}{34} f \otimes \frac{56}{78} f,
\]
Given (44), it is possible to write
\[
12 f \otimes \frac{56}{78} f = \begin{bmatrix} (1)X \otimes (5)X & (1)X \otimes (6)X \\ (2)X \otimes (5)X & (2)X \otimes (6)X \end{bmatrix},
\]
while the cosine of the angle \(\gamma \) becomes

\[
\cos \gamma = \frac{12_f \circ 78_f}{\left\| 12_f \right\|_a \left\| 78_f \right\|_a}.
\]

(54)

Now, I consider two transformed univariate random quantities which are respectively \(1_{X_{12}}^t \) and \(2_{X_{12}}^t \). They are evidently related to \(X_{12} \). They are represented by the vectors \((1)_t \) and \((2)_t \) whose contravariant components are given by \((1)_t = (1)^{t'} - (1)^{t''} \) and \((2)_t = (2)^{t'} - (2)^{t''} \). Therefore, I introduce an antisymmetric tensor of order 2 denoted by \(12_f \) which characterizes the transformed bivariate random quantity denoted by \(1_{X_{12}}t \). Then, the contravariant components of this tensor are given by

\[
12_f^{(i_12)} = \begin{bmatrix}
(1)^{i_1}_t \\
(2)^{i_1}_t
\end{bmatrix} \begin{bmatrix}
(1)^{i_2}_t \\
(2)^{i_2}_t
\end{bmatrix}
\]

(55)

Its covariant components are given by

\[
12_f^{(i_12)} = \begin{bmatrix}
(1)^{i_1}_t & (1)^{i_2}_t \\
(2)^{i_1}_t & (2)^{i_2}_t
\end{bmatrix} \begin{bmatrix}
(1)^{i_2}_t p_{i_2 i_1} & (1)^{i_1}_t p_{i_1 i_2} \\
(2)^{i_2}_t p_{i_2 i_1} & (2)^{i_1}_t p_{i_1 i_2}
\end{bmatrix}.
\]

(56)
By introducing an antisymmetric tensor of order 2 denoted by $\mathbf{34}_\alpha$ which characterizes the transformed bivariate random quantity denoted by X_{34} I obtain

$$34^{(i_3i_4)} = \begin{vmatrix} (3)^{f_{i_3}} & (3)^{f_{i_4}} \\ (4)^{f_{i_3}} & (4)^{f_{i_4}} \end{vmatrix}$$

and

$$34^{(i_3i_4)} = \begin{vmatrix} (3)^{f_{i_3}} & (3)^{f_{i_4}} \\ (4)^{f_{i_3}} & (4)^{f_{i_4}} \end{vmatrix}.$$

A transformed random quantity related to a quadruple divided random quantity is represented by an antisymmetric tensor of order 2 denoted by $\mathbf{12}_{34}$ whose contravariant components are given by

$$12_{34}^{(i_1i_2;i_3i_4)} = \begin{vmatrix} 12^{f_{i_1i_2}} & 12^{f_{i_3i_4}} \\ 34^{f_{i_1i_2}} & 34^{f_{i_3i_4}} \end{vmatrix}.$$

Its covariant components are expressed by

$$12_{34}^{f_{i_1i_2;i_3i_4}} = \begin{vmatrix} 12^{f_{i_1i_2}} & 12^{f_{i_3i_4}} \\ 34^{f_{i_1i_2}} & 34^{f_{i_3i_4}} \end{vmatrix}.$$

Now, the Schwarz’s α-generalized inequality becomes

$$|12_{34}^{\bigcirc_{\alpha}} 56_{78}| \leq \|12_{34}^{\alpha}\| \|56_{78}^{\alpha}\|,$$

the α-triangle inequality becomes

$$|12_{34}^{\bigcirc} 56_{78}| \leq \|12_{34}^{\alpha}\| + \|56_{78}^{\alpha}\|,$$

while the cosine of the angle γ becomes

$$\cos \gamma = \frac{12_{34}^{\bigcirc} 56_{78}}{\|12_{34}^{\alpha}\| \|56_{78}^{\alpha}\|}.$$

10 Rewriting of some fundamental metric expressions and its reason

Now, it is possible to rewrite some fundamental metric expressions by using properly the notion of coherent prevision of bivariate random quantities that I introduced. Therefore, when one rewrites (24) and (25) it is possible to obtain

$$12_f \bigcirc 34_f = \begin{vmatrix} \text{P}(1X_1 | X_3) \text{P}(1X_3 | X_2) \\ \text{P}(2X_1 | X_3) \text{P}(2X_3 | X_2) \end{vmatrix}.$$

and

$$\|12_f^\alpha\|^2 = \begin{vmatrix} \text{P}(1X_1 | X_3) \text{P}(1X_3 | X_2) \\ \text{P}(2X_1 | X_3) \text{P}(2X_3 | X_2) \end{vmatrix}.$$

It is obviously possible to obtain similar results by rewriting (45), (46), (47), (48) and (49). On the other hand, it is known that any vector viewed as an element of a given
vector space can always be expressed as a linear combination of the vectors representing a basis of the vector space under consideration. Hence, each linear combination is a division of a vector into those vectors representing a basis of the vector space under consideration. An analogous thing goes by considering (64) as well as (65), where one observes that coherent previsions of separate bivariate random quantities are basic elements of the metric expressions under consideration. I evidently accept into the domain of subjective probability a very meaningful principle borrowed from geometry according to which it is possible to divide a more complicated mathematical object into simpler mathematical objects represented by coherent previsions of bivariate random quantities in this context. Thus, it is possible to realize that a new and fruitful notion of coherent prevision of a generic bivariate random quantity is introduced. Moreover, the above principle is conceptually fulfilled by considering systematically all marginal univariate random quantities into a generic bivariate random quantity. A very important point must finally be stressed: the notion of coherent prevision of a univariate or bivariate random quantity is not a mathematical convention. It is an indirect mathematical notion because its foundation is the notion of prevision of the same random quantity which is always a psychological notion in the first instance. I show a geometric approach which does not introduce arbitrary mathematical conventions but it makes more important the distinction between an extralogical or psychological notion and a logic or mathematical notion which is nevertheless intrinsically connected to the former. According to such mathematical conventions it would be possible to give a uniquely determined answer to an indeterminate problem because of its data which are incomplete because they are only able to establish certain limits or boundaries. These conventions must not be accepted for this reason.

11 Conclusions

I accepted the principles of the theory of concordance into the domain of subjective probability. This acceptance is well-founded because the definition of concordance shown by Gini is implicit as well as the one of prevision of a random quantity and in particular of probability of an event. Indeed, these definitions are based on criteria which permit to measure them. I represented bivariate and quadruple divided random quantities in a tensorial fashion. I observed that metric properties of the notion of α-product mathematically fulfill the ones of a coherent prevision of a generic bivariate random quantity. This geometric approach that I shown is useful because it is possible to examine in a more complete fashion the domain of the possible alternatives by extending the notion of α-product to two different antisymmetric tensors of the same order. Indeed, with regard to any problem that one has to consider, there always exists an enormous number of possible alternatives. If information and knowledge of a given individual do not permit him to exclude some of them as impossible then all alternatives which can logically be considered remain possible for him in the sense that they are not either certainly true or certainly false. In particular, this means that it is possible to consider different bivariate and quadruple divided random quantities in addition to the starting ones. This tensorial approach allows of representing a bivariate random quantity regardless of any ordered pair of univariate random quantities which are the components of the bivariate random quantity under consideration. Of course, it also allows of representing a quadruple divided random quantity regardless of any ordered pair of bivariate random quantities which are the components of the quadruple divided random quantity under consideration. The number of the components of an antisym-
metric tensor of order 2 decreases by passing from an affine tensor of order 2 to an
antisymmetric tensor of the same order and this is useful in order to satisfy simplifica-
tion and compression needs. I introduced fundamental metric expressions referring to
transformed random quantities representing changes of origin obtained by using a con-
ceptually and operationally complete notion of coherent prevision of marginal univari-
ate random quantities. By considering quadruple divided random quantities I realized
that the notion of coherent prevision of bivariate random quantities can be used in order
to obtain fundamental metric expressions of quadruple divided random quantities.

References

Sydney-Toronto (1975)

Sons, London-New York-Sydney-Toronto (1972)

bility. Edited by H. E. Kyburg, jr., H. E. Smokler. R. E. Krieger Publishing Com-

[5] de Finetti, B.: The role of “Dutch Books” and of “proper scoring rules”. The

analysis. Logic, Methodology and Philosophy of Science VI (Hannover, 1979),

329 (1962)

Mathematics 41, 269–292 (1940)

Sons, New York, London, Sydney (1964)

Institute, 35, 2, 91–97 (1957)

by R. B. Braithwaite with a preface by G. E. Moore. Littlefield, Adams & Co,
Paterson, N. J. (1960)

