Vol 5 No 8 (2019): EPH - International Journal of Mathematics and Statistics (ISSN: 2208-2212)
Articles

On a class of Weakly Berwald special (α; β)-metrics of scalar flag curvature

Vanithalakshmi S M
Kuvempu University,
Bio
Narasimhamurthy S K
Kuvempu University,
Bio
Roopa.M.K
Kuvempu University,
Bio
Published August 31, 2019
Keywords
  • Finsler space,
  • S-curvature,
  • (α; β)-metrics,
  • Mean Berwald curvature,
  • Homogenous Finsler space
How to Cite
Vanithalakshmi S M, Narasimhamurthy S K, & Roopa.M.K. (2019). On a class of Weakly Berwald special (α; β)-metrics of scalar flag curvature. EPH - International Journal of Mathematics and Statistics (ISSN: 2208-2212), 5(8), 01-09. Retrieved from https://ephjournal.com/index.php/ms/article/view/1543

Abstract

In this paper, we study the Finsler space with special (α; β)-metric
F = α + β2
α is scalar flag curvature and we proved that, if it is weakly Berwald
if and only if it is Berwald and vanishes flag curvature. Further, we found that
this metric is locally Minkowskian.

Downloads

Download data is not yet available.

References

  1. Cheng.X, On (α; β)-metrics of scalar flag curvature with constasnt S-curvature. Acta Math,sin.Engl.ser 26(9),1701-1708(2010).
  2. Cui.N.W, On the S-Curvature of some (α; β)-metrics, Acta Math Sci 26A(7),1047-1056.
  3. C.Nigwei, On the S-Curvature of (α; β)-metrics, Acta Math Sci 26A(7),1047-1056.
  4. D.Bao, S.S.Chen and Z.Shen, An Introduction to Riemannian-Finsler Geometry, Springer Verlag 2000.
  5. S.S.Chern and Z.Shen, Riemannan-Finsler geometry, World-Scientific publishing Co.,Singapore .
  6. Laurian-Ioan piscoran.Vishnu Narayan Mishra, S-Curvature for a new class of (α; β)-metrics, SplingerVerlag Italia (2016).
  7. Li Benling and Z.Shen, On a Class of weak Landsberg metrics, J.Science China Series., 573-589, 50(2004).
  8. Narasimhamurthy.S.K, Kavyashree A.R,Ajith and Mallikarjun.Y.K, On class of weakly Berwald (α; β)-metrics of scalar flag Curvature. , Int. J.Math.Res.5(1),97-108 (2013).
  9. Narasimhamurthy.S.K, Thippeswamy.K.R, Two kinds of weakly Berwald special (α; β)-metrics of scalar flag Curvature. , Int. J.of Mathemtics Trends and Technology.Vol.44,no-3 (2013).
  10. P.L.Antonelli, R.S.Ingarden and M.Matsumoto, The theory of sprays and FInsler spaces with applications in Physics and biology. , Kluwer Acad., Dordecht.
  11. S.Deng and X.Wang , S-Curvature of homogeneous (α; β)-metrics, Balkan Journal of Geometry and its application. Vol.15 ,No.2.pp 39-48 (2010).
  12. S.Deng and .Hou, Homogeneous Finsler spaces of negative curvature School of Mathematical sciences and LPMC, Nankai University,Tianjin, 300071, PR China.
  13. Shaoqing Deng,, The S-Curvature of homogeneous Randers spaces, School of Mathematical Sciences,Nankai University, Tianjin 300071,PR China.
  14. S.C.Shibata , On Finsler spaces with Kropina metric, Rep. Math, Phys. 13 (1978), 117-128.
  15. S.S. Chern and Z.Shen, Riemann Finsler Geometry, World Scientific Publishers (2004). On Class of Weakly Berwald of special (α; β)-metrics of scalar flag curvature 9
  16. S.Deng and X,Wang The S-Curvature of homogeneous (α; β)-metrics Balkan Journal of Geometry and its applications, Vol 15,No.2,pp. 39-48,(2010).
  17. S.Bacso, X.Cheng and Z.Shen, Curvature properties of (α; β)-metrics, Adv. study, pure Math. Sco., Japan(2007).
  18. V.K. Kropina, On Projective Finsler space with a certain special form,, Naucn Doklady vyss. Skoly, fiz-math Nauki 19-59(2),38-42, Russian(1960).
  19. Vanithalakshmi.S.M and Narasimhamurthy.S.K, S- Curvature of homogeneous Finsler space with special (α; β)-metrics., Gulf Journal of Mathematics, 1-11 vol 1(2018).
  20. X.Cheng and Z.Shen, A Class of Finsler metrics with isotropic S-Curvature, Isreal J. Math 169, (2009).
  21. X.Cheng and H.Wang and M.Wang, (α; β)-metrics with relatively isotropic mean Landsberg curvaturre, J.Publ.Math. Debraceen, 475-485, 72(2008) 169.
  22. Z.Hu and S.Deng, Three dimenssional homogeneous Finsler manifolds, Math. Nachr. 285, No. 10, 1243 1254(2012).
  23. Z.Shen Volume comparision and its applications in Riemannian Finsler geometry , Adv.Math. 128, 306-328, (1997).